Machine learning accelerates MD-based binding pose prediction between ligands and proteins

نویسندگان

  • Kei Terayama
  • Hiroaki Iwata
  • Mitsugu Araki
  • Yasushi Okuno
  • Koji Tsuda
چکیده

Motivation Fast and accurate prediction of protein-ligand binding structures is indispensable for structure-based drug design and accurate estimation of binding free energy of drug candidate molecules in drug discovery. Recently, accurate pose prediction methods based on short Molecular Dynamics (MD) simulations, such as MM-PBSA and MM-GBSA, among generated docking poses have been used. Since molecular structures obtained from MD simulation depend on the initial condition, taking the average over different initial conditions leads to better accuracy. Prediction accuracy of protein-ligand binding poses can be improved with multiple runs at different initial velocity. Results This paper shows that a machine learning method, called Best Arm Identification, can optimally control the number of MD runs for each binding pose. It allows us to identify a correct binding pose with a minimum number of total runs. Our experiment using three proteins and eight inhibitors showed that the computational cost can be reduced substantially without sacrificing accuracy. This method can be applied for controlling all kinds of molecular simulations to obtain best results under restricted computational resources. Availability and implementation Code and data are available on GitHub at https://github.com/tsudalab/bpbi. Contact [email protected] or [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics analysis to evaluate docking pose prediction

The accurate prediction of a ligand-protein complex structure is important for computer-assisted drug development. Although many docking methods have been developed over the last three decades, the success of binding structure prediction remains greatly limited. The purpose of this study was to demonstrate the usefulness of molecular dynamics (MD) simulation in assessing a docking pose predicte...

متن کامل

TargetATPsite: A template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble

Understanding the interactions between proteins and ligands is critical for protein function annotations and drug discovery. We report a new sequence-based template-free predictor (TargetATPsite) to identify the Adenosine-5'-triphosphate (ATP) binding sites with machine-learning approaches. Two steps are implemented in TargetATPsite: binding residues and pockets predictions, respectively. To pr...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Predicting small ligand binding sites in proteins using backbone structure

MOTIVATION Specific non-covalent binding of metal ions and ligands, such as nucleotides and cofactors, is essential for the function of many proteins. Computational methods are useful for predicting the location of such binding sites when experimental information is lacking. Methods that use structural information, when available, are particularly promising since they can potentially identify n...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 2018